On the use of Simulated Photon Paths to Co-register TOA Radiances in EarthCARE Radiative Closure Experiments

Florian Tornow, Carlos Domenech, Howard Barker

Institute for Space Sciences, FU Berlin

10.10.2014

- > retrieval of vertical profiles of
 - cloud
 - aerosol
 - and precipitation

parameters with CPR, ATLID and MSI

> retrieval of vertical profiles of

- cloud
- aerosol
- and precipitation

parameters with CPR, ATLID and MSI

- > retrieval of vertical profiles of
 - cloud
 - aerosol
 - and precipitation

parameters with CPR. ATLID and MSI

- > retrieval of vertical profiles of
 - cloud
 - aerosol
 - and precipitation

parameters with CPR, ATLID and MSI

- > retrieval of vertical profiles of
 - cloud
 - aerosol
 - and precipitation

parameters with CPR, ATLID and MSI

verisimiltude of retrieval through Radiative Closure:

3 along-track measurements of BBR <u>versus</u> simulations of 1D RTM or 3D Monte Carlo RTM

- > retrieval of vertical profiles of
 - cloud
 - aerosol
 - and precipitation

parameters with CPR, ATLID and MSI

BBR measurements

broadband radiances (SW) and LW) at 3 along-track viewing angles

> 3D Monte Carlo RTM

- > acting on retrieved properties
- simulating BBR TOA SW radiances (or radiative
- measurement versus simulation

this study: concerning a radiative closure with SW

- BBR measurements
 - broadband radiances (SW) and LW) at 3 along-track viewing angles
- > 3D Monte Carlo RTM
 - > acting on retrieved properties
 - simulating BBR TOA SW radiances (or radiative
- measurement versus simulation
 - → difference indicating

this study: concerning a radiative closure with SW

- BBR measurements
 - broadband radiances (SW) and LW) at 3 along-track viewing angles
- > 3D Monte Carlo RTM
 - acting on retrieved properties
 - simulating BBR TOA SW radiances (or radiative fluxes)
- measurement versus simulation
 - → difference indicating

this study: concerning a radiative closure with SW

- ▷ BBR measurements
 - broadband radiances (SW and LW) at 3 along-track viewing angles
- - > acting on retrieved properties
- measurement versus simulation
 - difference indicating inaccuaracies of retrieved properties

this study: concerning a radiative closure with SW radiances

- - broadband radiances (SW and LW) at 3 along-track viewing angles
- - > acting on retrieved properties
 - □ simulating BBR TOA SW radiances (or radiative fluxes)
- measurement versus simulation
 - difference indicating inaccuaracies of retrieved properties

this study: concerning a radiative closure with SW radiances

- ▶ BBR measurements
 - broadband radiances (SW and LW) at 3 along-track viewing angles
- > 3D Monte Carlo RTM
 - > acting on retrieved properties
 - □ simulating BBR TOA SW radiances (or radiative fluxes)
- measurement versus simulation
 - difference indicating inaccuaracies of retrieved properties

this study: concerning a radiative closure with SW radiances

- □ EarthCARE: co-registration helps to identify domains with incorrect retrieval
- □ up-to-date: at heighest reflecting
 - cloud top height
 - surface
- > problematic for transparent or
 - need for more information vertical distribution of refl. layers
 - develope method to utilize this new information

- □ EarthCARE: co-registration helps to identify domains with incorrect retrieval
- up-to-date: at heighest reflecting layer
 - cloud top height
 - surface
- > problematic for transparent or
 - need for more information vertical distribution of refl. layers
 - develope method to utilize this new information

- □ EarthCARE: co-registration helps to identify domains with incorrect retrieval
- up-to-date: at heighest reflecting layer
 - cloud top height
 - surface
- > problematic for transparent or
 - need for more information vertical distribution of refl. layers
 - develope method to utilize this new information

- □ EarthCARE: co-registration helps to identify domains with incorrect retrieval
- up-to-date: at heighest reflecting layer
 - cloud top height
 - surface
- > problematic for transparent or broken cloud layers
 - need for more information vertical distribution of refl. layers
 - develope method to utilize this new information

- □ EarthCARE: co-registration helps to identify domains with incorrect retrieval
- up-to-date: at heighest reflecting layer
 - cloud top height
 - surface
- > problematic for transparent or broken cloud layers
 - need for more information vertical distribution of refl. layers
 - develope method to utilize this new information

- □ EarthCARE: co-registration helps to identify domains with incorrect retrieval
- up-to-date: at heighest reflecting layer
 - cloud top height
 - surface
- > problematic for transparent or broken cloud layers
 - need for more information vertical distribution of refl. layers
 - develope method to utilize this new information

- □ EarthCARE: co-registration helps to identify domains with incorrect retrieval
- up-to-date: at heighest reflecting layer
 - cloud top height
 - surface
- > problematic for transparent or broken cloud layers
 - need for more information vertical distribution of refl. layers
 - develope method to utilize this new information

- > extract MC photon paths information
- know reflecting layer profile to each simulated radiance
- > nadir profile defines scene structure
- → find radiances in oblique views by:
 - comparing oblique profiles to nadir profile
 - the one with highest similarity to nadir profile is selected
 - its oblique radiance is co-registered to the nadir
- → Maximum Similarity Co-Registration

- extract MC photon paths information
- know reflecting layer profile to each simulated radiance
- > nadir profile defines scene structure
- > find radiances in oblique views by
 - comparing oblique profiles to nadir profile
 - the one with highest similarity to nadir profile is selected
 - its oblique radiance is co-registered to the nadir
- Maximum Similarity Co-Registration

- extract MC photon paths information
- know reflecting layer profile to each simulated radiance
- nadir profile defines scene structure
- find radiances in oblique views by
 - comparing oblique profiles to nadir profile
 - the one with highest similarity to nadir profile is selected
 - its oblique radiance is co-registered to the nadir
- ▶ Maximum Similarity Co-Registration

- extract MC photon paths information
- know reflecting layer profile to each simulated radiance
- nadir profile defines scene structure
- - comparing oblique profiles to nadir profile
 - the one with highest similarity to nadir profile is selected
 - its oblique radiance is co-registered to the nadir
- Maximum Similarity Co-Registration

- extract MC photon paths information
- know reflecting layer profile to each simulated radiance
- nadir profile defines scene structure
- find radiances in oblique views by:
 - comparing oblique profiles to nadir profile
 - the one with highest similarity to nadir profile is selected
 - its oblique radiance is co-registered to the nadir
- > Maximum Similarity Co-Registration

- extract MC photon paths information
- know reflecting layer profile to each simulated radiance
- nadir profile defines scene structure
- - comparing oblique profiles to nadir profile
 - the one with highest similarity to nadir profile is selected
 - its oblique radiance is co-registered to the nadir
- > Maximum Similarity Co-Registration

Experiments

based on CCCM data (A-Train) with vertical profiles of aerosol and cloud properties (similar to MSI, ATLID and CPR), but lacks BBR's oblique radiance measurements

> control run

- using original CCCM data
- apply 3D MC RTS
- obtain BBR-like radiances

> perturbed run

- adding noise to cloud parameters (i.e. liquid, ice water contents, droplet effective radius and crystal effective diameter)
- > apply 3D MC RTS with inaccurate retrieval
- □ and output 3D photon path information

Experiments

based on CCCM data (A-Train) with vertical profiles of aerosol and cloud properties (similar to MSI, ATLID and CPR), but lacks BBR's oblique radiance measurements

control run

- using original CCCM data
- apply 3D MC RTS
- obtain BBR-like radiances

> perturbed run

- adding noise to cloud parameters (i.e. liquid, ice water contents, droplet effective radius and crystal effective diameter)
- ▶ apply 3D MC RTS with inaccurate retrieval

Experiments

based on CCCM data (A-Train) with vertical profiles of aerosol and cloud properties (similar to MSI, ATLID and CPR), but lacks BBR's oblique radiance measurements

control run

- using original CCCM data
- apply 3D MC RTS
- obtain BBR-like radiances

perturbed run

- adding noise to cloud parameters (i.e. liquid, ice water contents, droplet effective radius and crystal effective diameter)
- > apply 3D MC RTS with inaccurate retrieval
- □ and output 3D photon path information

▶ Max. Sim. deals better with broken cloud fields

▶ Max. Sim. deals better with broken cloud fields

▶ Max. Sim. deals better with broken cloud fields

> Max. Sim. deals better with broken cloud fields

Max. Sim. deals better with broken cloud fields

→ Max. Sim. allocates off-nadir radiances more reliably

→ Max. Sim. allocates off-nadir radiances more reliably

10.10.2014

Co-registered TOA radiance differences

▶ Max. Sim. allocates off-nadir radiances more reliably

Co-registered TOA radiance differences

→ Max. Sim. allocates off-nadir radiances more reliably

Co-registered TOA radiance differences

→ Max. Sim. allocates off-nadir radiances more reliably

Co-registered TOA radiance differences

Max. Sim. allocates off-nadir radiances more reliably

- ▶ EarthCARE's Radiative Closure compares, among others:
- need for information on 3D structure of clouds/aerosols
- > aim of this work.
- > results:

- ▶ EarthCARE's Radiative Closure compares, among others:
 - BBR SW radiances at 3 along-track viewing angles
 - against simulated counterparts by 3D Monte Carlo RTM
- > co-registration of off-nadir radiances

 - need for information on 3D structure of clouds/aerosols
- > aim of this work.
- > results:

- ▶ EarthCARE's Radiative Closure compares, among others:
 - BBR SW radiances at 3 along-track viewing angles
 - against simulated counterparts by 3D Monte Carlo RTM
- - need for information on 3D structure of clouds/aerosols
- > aim of this work.
- > results:

- ▶ EarthCARE's Radiative Closure compares, among others:
 - BBR SW radiances at 3 along-track viewing angles
 - against simulated counterparts by 3D Monte Carlo RTM
- - helps to identify domains with inaccuratly retrieved parameters
 - problematic for semi-transparent or broken cloud fields
 - need for information on 3D structure of clouds/aerosols
- > aim of this work.
- > results:

- ▶ EarthCARE's Radiative Closure compares, among others:
 - BBR SW radiances at 3 along-track viewing angles
 - against simulated counterparts by 3D Monte Carlo RTM
- - helps to identify domains with inaccuratly retrieved parameters
 - problematic for semi-transparent or broken cloud fields - need for information on 3D structure of clouds/aerosols
- > aim of this work.
- > results:

- ▶ EarthCARE's Radiative Closure compares, among others:
 - BBR SW radiances at 3 along-track viewing angles
 - against simulated counterparts by 3D Monte Carlo RTM
- - helps to identify domains with inaccuratly retrieved parameters
 - problematic for semi-transparent or broken cloud fields
- need for information on 3D structure of clouds/aerosols
- > aim of this work.
 - use 3D MC photon paths
- > results:

- ▶ EarthCARE's Radiative Closure compares, among others:
 - BBR SW radiances at 3 along-track viewing angles
 - against simulated counterparts by 3D Monte Carlo RTM
- - helps to identify domains with inaccuratly retrieved parameters
 - problematic for semi-transparent or broken cloud fields
 - need for information on 3D structure of clouds/aerosols
- > aim of this work.
 - use 3D MC photon paths
 - to estimate a profile of reflecting layers to each radiance
 - find off-nadir radiances with most similar profile to nadir profile (Maximum Similarity Co-Registration)
- > results:

- ▶ EarthCARE's Radiative Closure compares, among others:
 - BBR SW radiances at 3 along-track viewing angles
 - against simulated counterparts by 3D Monte Carlo RTM
- - helps to identify domains with inaccuratly retrieved parameters
 - problematic for semi-transparent or broken cloud fields
 - need for information on 3D structure of clouds/aerosols
- > aim of this work.
 - use 3D MC photon paths
 - to estimate a profile of reflecting layers to each radiance
 - find off-nadir radiances with most similar profile to nadir profile (Maximum Similarity Co-Registration)
- > results:
 - improved radiance co-registration for semi-transparent and broken cloud fields
 - no improvement for optically thick clouds (not shown here)

- ▶ EarthCARE's Radiative Closure compares, among others:
 - BBR SW radiances at 3 along-track viewing angles
 - against simulated counterparts by 3D Monte Carlo RTM
- - helps to identify domains with inaccuratly retrieved parameters
 - problematic for semi-transparent or broken cloud fields
- need for information on 3D structure of clouds/aerosols > aim of this work.
- use 3D MC photon paths
 - to estimate a profile of reflecting layers to each radiance
 - find off-nadir radiances with most similar profile to nadir profile (Maximum Similarity Co-Registration)
- results:
 - improved radiance co-registration for semi-transparent and broken cloud fields
 - no improvement for optically thick clouds (not shown here)

Alternative: Closure with SW and LW fluxes

▷ BBR flux retrieval algorithm is based on the multi-view capability of the BBR and the synergy between BBR and MSI

- ▷ BBR viewing design characterizes the radiance field of the observed target from 3 AT directions → improving observation of the surface-atmosphere anisotropy
- Non-linear combination of MSI radiances provides information on the scene anisotropy of the target
- ▶ The radiance-to-flux models convert the 3 BBR measurements. collocated at the HRL of the atmosphere-surface system, into flux estimates. Then the radiative fluxes are merged, thereby enabling comparison of measurement-derived fluxes against model-derived fluxes from 1D and 3D RT models.

Methodology

- > SW ADMs for every BBR viewing angle are constructed using a feed-forward back-propagation artificial neural network (ANN) technique
- ▷ CERES radiance, solar geometry, MODIS radiances over clear/cloudy FOV area, cloud cover and surface ancillary parameters are inputs of the ANN training
- ▷ CERES SW anisotropic factors are used as outputs
- ▷ election of ANN input parameters depend on the scene class observed
- ▶ LW TOA Fluxes are obtained through theoretical polynomial second order regressions on the MSI 'split-window' channels BT differences
- \triangleright Anisotropy models are classified in bins of 20 $Wm^{-2}sr^{-1}$
- A large RT-based geophysical database is used to train the data
- ▶ Anisotropic Factors are estimated from theoretical simulated thermal radiances and fluxes

Overall Results

Within the 5000km-long frame, different co-registration methods led to following results:

Domains	Characteristics	P(SRF)	P(HRL)	P(MXS)
1400-1600	Cirrus and Cirrostratus Clouds	50.78%	68.38%	81.81%
1600-1800	Cirrus Clouds	61.4%	80.47%	89.35%
2800-3000	Deep Convective Clouds (horizontally heterogeneous)	49.62%	90.23%	92.04%
3000-3200	Deep Convective Clouds (horizontally homogeneous)	36.14%	82.10%	78.17%
3600-3800	Cirrus Clouds and cloud-free zones	47.49%	87.27%	89.32%
1052/5000	Only domains with Cumulus Clouds	84.37%	85.75%	85.27%
1933/5000	Only domains with Cirrus Clouds	71.94%	87.38%	91.98%
181/5000	Only domains with Deep Convective Clouds	75.52%	93.12%	89.98%
1286/5000	Only cloud-free domains	0.45%	0.45%	15.01%

How does Maximum Similarity Co-registration work?

In order to select an off-nadir radiance

- b take the nadir line-of-sight through reflecting layers of domain D
- □ and a subset of relevant off-nadir lines-of-sight (all intersecting with D)

$$ho \ s = \cos\Theta = \langle \frac{C_{\mathsf{nadir}}}{\|C_{\mathsf{nadir}}\|}, \frac{C_{\mathsf{oblique}}}{\|C_{\mathsf{oblique}}\|} \rangle$$

 pick the off-nadir radiance, belonging to the most similar off-nadir line-of-sight

How to measure the goodness of co-registration?

- in EarthCARE, co-registration serves to identify inaccurate retrieval
- > for simplicity, we assume:
 - inaccurate retrieval of cloud parameters
 - reduces/enhances radiances by a fraction
 - equal relative difference between measured and simulated radiances in all 3 VZAs

Co-registered relative TOA radiance differences - MXS

- relative difference: $d_i^{\nu} = \frac{I_{\nu}^{M}(i) I_{\nu}^{S}(i)}{I_{M}(i)}$
- \triangleright which ideally lies on \vec{u} with $n \in \mathbb{R}$: $\vec{u} = (1, 1, 1) \cdot n$
- ightharpoonup hence, X should scatter around \vec{u} : $X = [m_1, \dots, m_{n_D}]$
- \triangleright or \vec{w}_1 , the first Eigenvector of X, lines up with \vec{u} : $XX^TW = \lambda W = \lambda [\vec{w}_1, \vec{w}_2, \vec{w}_3]$
- ho with Eigenvalues λ : $\lambda = [\lambda_1, \lambda_2, \lambda_3]$
- \triangleright we measure the goodness of co-registration: $P = \left(\frac{\vec{w}_1}{||\vec{w}_1||} \cdot \frac{\vec{u}}{||\vec{u}||}\right) \cdot \lambda_1 \cdot 100\%$

Caveats of using 3D photon paths

unrealistic 3D photon paths may happen because of:

- inaccurate retrieval
- inconsistent methodologies (3D scene constr., 3D MC RTM, . . .)

potentially:

- ▶ we miss something, which is actually there

in case:

10.10.2014

- by the real structure is inaccurately retrieved
 - ▶ we identify it (by assigning just another errorous radiance) difference)
 - we fail identifying it (by selecting a low radiance difference)
- the real structure is fine
 - we falsely identify it
 - > we consider it fine

BBR - details on set-up

Overview of instruments

atmospheric lidar - ATLID

- molecule/cloud/aerosol separation
- \triangleright every 100m with diameter of 5/12m

cloud profiling radar - CPR

- □ dopplerized 94 GHz
- ▷ liquid/ice clouds, light rain

multispectral imager - MSI

- ▶ 4 solar channels, 3 thermal channels

broadband radiometer - BBR

- □ 3 spatialdirection alongtrack 55°backward, nadir, 55°forward
- $\triangleright 1km \times 1km$ footprint in nadir
- \triangleright for comparability/noise reduction transformed into $10km \times 10km$

Scene construction algorithm

Data

- ▷ 2D cross section (RXS)
 - vertical and horizontal information
 - clouds (liquid/ice), aerosols, gases
- ▷ 2D image of MSI (along and across track)

Algorithm

- combine RXS details and MSI info
- donate RXS properties to off-track pixels
- picking the most similar spectral footprint
- in certain region around recipient pixel
- → obtain detailed information in 3D

CCCM Data

- CFRFS-CALIPSO-CloudSat-MODIS (CCCM) consists of:
 - CloudSat's Cloud-Profiling Radar
 - CALIPSO's lidar

 - and CERES

- ▷ CERES provides only radiances close to nadir , and lacks BBR's 2 off-nadir views
 - ▶ therefore, we generate both BBR measurement and 3D Monte Carlo RTS outputs
- □ using a 5000km long section, measured on 5th July 2006 over equatorial Pacific

For devouring...

[Barker al., 2003]

Monte Carlo Simulation of Solar Reflectances for Cloudy Atmospheres Journal of the Atmospheric Sciences, 60(16):1881-1894, 2003.

[Barker al., 2011]

A 3D cloud-construction algorithm for the EarthCARE satellite mission. Journal of the Royal Meterological Society, 2011.

FLURB - FLUx Retrievals from FarthCARE BBR Observations

FU Berlin, Environment Canada, RMI of Belgium, Atmospheric and Climate Applications Inc., 2006.

[EarthCARE Mission Advisory Group, 2006] EarthCARE Mission Requirements Document, ESA and JAXA, 2006.

FarthCARE mission instruments Fact sheet

European Space Agency, 2011.

- > 3D radiative transfer
- distribute photons over whole domain
- > follow each bunch of photons
- > at each event:

 - ▷ calculate rad.

- > 3D radiative transfer
- distribute photons over whole domain
- > follow each bunch of photons
- > at each event:

 - ▷ calculate rad.

- > 3D radiative transfer
- distribute photons over whole domain
- of photons
- > at each event:

10.10.2014

▷ calculate rad.

- > 3D radiative transfer
- distribute photons over whole domain
- > follow each bunch of photons
- > at each event:

 - ▷ calculate rad.

- > 3D radiative transfer
- over whole domain
- > follow each bunch of photons
- > at each event:
 - □ use phase
 - ▷ calculate rad.

- > 3D radiative transfer
- over whole domain
- > follow each bunch of photons
- > at each event:
 - use phase function
 - calculate rad. contribution to BBR observations

- > 3D radiative transfer
- distribute photons over whole domain
- > follow each bunch of photons
- > at each event:
 - use phase function
 - calculate rad. contribution to BBR observations

- - the sum over all radiative contributions
- and full atmospheric paths for each viewing direction
 - a vector of radiative contributions for each vertical level

- - the sum over all radiative contributions
- and full atmospheric paths for each viewing direction
 - a vector of radiative contributions for each vertical level

